
Density discontinuities in short polymer chains modelled as hard-sphere sequences

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1990 J. Phys. A: Math. Gen. 23 4481

(http://iopscience.iop.org/0305-4470/23/20/010)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 01/06/2010 at 09:21

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/23/20
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J.  Phys. A: Math. Gen. 23 (1990) 4481-4489. Printed in the U K  

Density discontinuities in short polymer chains modelled as 
hard-sphere sequences 

R J Fleming? 
Institute for Molecular Science, Okazaki, Japan 444 

Received 28 December 1989, in final form 29 June 1990 

Abstract. Monte Carlo simulations of polymer chains containing up to fifteen hard-sphere 
repeat units have been carried out, the principal interest being the density distribution of 
the spheres in the neighbourhood of a rigid boundary. The density discontinuity recently 
reported by Croxton, in the direction normal to the boundary and at a distance of one 
sphere diameter from it, is confirmed, although there are considerable differences in the 
calculated densities very close to the boundary, It is shown that the amplitude of the 
discontinuity is largely independent of the self-avoiding (excluded volume) condition 
imposed on the growing chain, but is approximately halved when the rigid boundary 
restraint is removed. The discontinuity originates mainly in the distribution of the second 
sphere of the chain sequence. The details of the Configurational features of the chains are 
largely in agreement with Croxton's findings, although trains consisting of more than two 
spheres have been found. The exponent y in the expression ( R < , ) c c ( N -  where ( R : )  
is the mean square end-to-end length of a chain containing N spheres, is evaluated at 
-1.37 for 3 G N S 1 5 .  

1. Introduction 

In a recent series of papers, Croxton (1983, 1984, 1985, 1986, 1987) has investigated 
the configurational properties of perfectly flexible short self-avoiding polymer chains 
in the vicinity of a rigid planar boundary. He developed convolution ( c )  and iterative 
convolution ( IC)  estimates (Croxton 1983, 1984 respectively) of the normalized spatial 
probability density distribution function Z(z, ,  N )  of the ith segment of a chain 
containing N segments or mers; the z-direction is normal to the planar boundary. He 
compared these estimates with the results of a Monte Carlo ( M C )  simulation (Croxton 
1986) in which the individual segments of the chain were modelled as self-avoiding 
hard spheres, the centres of succesively added spheres being separated by a distance 
equal to the sphere diameter. 

An interesting feature common to these three results was a marked discontinuity 
in the probability density distribution function 

iv 

P(Z, N I =  z Z(Z,, N )  
, = 2  

at a distance equal to one segment diameter from the boundary, the IC calculation 
also showing smaller discontinuities at distances of two and three segment diameters. 

f Permanent address: Department of Physics, Monash University, Clayton, Victoria 3168, Australia. 
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Such discontinuities contrast sharply with the essentially structureless density distribu- 
tions of Dickinson and La1 (1980), and with the small diffuse peaks at low multiples 
of the segment diameter obtained from a variety of analytic and simulation techniques 
(Percus 1976, Henderson er a1 1976, Waisman et a1 1976, Blum and Stell 1976, Snook 
and Henderson 1978, Henderson and Van Swol 1984, Dickman and Hall 1988). 

We present here the results of an M C  simulation, essentially a repetition of Croxton’s 
work, which confirms the existence of a discontinuity in p(z, N )  at z = 1. However, 
our p(z,  N )  is in much better agreement with the I C  prediction in the small-z region, 
and the details of the tails/loops/trains structure of the chains close to the boundary 
differ significantly from those given by Croxton. We show also that while the amplitude 
of the discontinuity is slightly reduced by the excluded volume condition, it is almost 
doubled by the rigid planar boundary constraint; the discontinuity originates essentially 
in the angular distribution of the centre of the second sphere of the chain at a fixed 
distance from the first. 

2. The Monte Carlo chain generation process 

The chain generation process adopted here is very similar to that described by Croxton 
(1986). The N t h  repeat unit (mer) of the polymer chain is represented by a sphere of 
unit diameter whose centre is separated from those of the ( N  - 1)th and ( N +  1)th 
spheres by unit distance. The centre of the first sphere is located at (0, 0, O ) ,  and the 
presence of the rigid planar boundary at z = -0.5 requires that the centres of all other 
spheres have z-coordinates 20.  The excluded volume condition is violated if the centre 
of the next sphere which it is proposed to add to an existing sequence is within less 
than unit distance of any other centre, and in that case the chain is discarded, although 
the configurational statistics up to and including the last acceptable sphere are of 
course added to the running totals being compiled for averaging. 

Croxton (1986) emphasizes the importance of choosing the location of the centre 
of the ( N  + 1)th sphere at random on the spherical surface of unit radius centred on 
the Nth sphere. To do this he adopts a procedure described by Knuth (1969), in which 
independent x, y ,  z coordinates normally distributed over the interval (-1, 1) are 
generated, and the coordinates of the ( N  + 1)th centre relative to the Nth  are then 
taken as x’ = x/ r, y ‘  = y /  r and z’ = z /  r where r = (x2 + y 2 +  z’)”’. Here we have adopted 
a simpler and certainly faster procedure (Smith and Fleming 1975) in which cos 0 
(where 0 is the bond angle) is uniformly distributed over the interval (-1, l ) ,  and the 
azimuthal angle 4 is uniformly distributed ( 0 , 2 n ) .  A check of this procedure combined 
with the random number generator routine was made by generating lo6 points (x, y ,  z )  
and inspecting the separate x, y and z distributions within 0.025-wide intervals; the 
departure from an ideally random distribution (25 000 samples in each interval) was 
less than 2%. 

3. Results and discussion 

3.1. Segment density distributions 

In figure 1 we compare the density distribution p(z,  15) for a 15-mer chain constrained 
by a rigid boundary at z = 0 with the corresponding distributions obtained by Croxton 
from his MC and IC calculations. The present results were obtained by averaging over 
300 000 15-mer chains, about 30% of the corresponding number of chains in Croxton’s 
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z 

Figure 1. Total segment density distribution p(z ,  1 5 )  against z. Full curve: Croxton, iterative 
convolution analysis. Broken curve: Croxton, Monte Carlo simulation. Dotted curve: 
present Monte Carlo simulation, 300 000 15-sphere chains. 

sample. The horizontal axis scale is in multiples of the sphere diameter. The discon- 
tinuity in p ( z ,  15) at z = 1 is clearly seen in each distribution, although its amplitude 
varies from around 0.9 in the present work to about 1.25 in Croxton’s MC data. The 
smaller discontinuities at z = 2 and z = 3 predicted by IC are both missing from both 
MC results, although the number of MC samples might not be sufficiently large to 
resolve the z = 3 case. There is little difference between the two MC results for z > 1.5; 
however, in the region 0 < z < 0.9 the present MC data are in better overall agreement 
with the I C  result, while for 1 < z < 1.5 the sharply increasing density in Croxton’s MC 

data better reflects the I C  pattern. These differences are surprising, given that the two 
sets of MC data differed by not more than O.6%, 0.3% and 0.15% in respect of ( R L ) ,  
( z ; )  and ( z N )  up to n = 15; ( R L )  is the mean square end-to-end length of a chain 
consisting of N spheres, and the other two quantities are defined analogously. Further- 
more, the attrition rate, i.e. the decrease in the number of samples with increasing 
chain length, due to the excluded volume constraints, was almost identical. More 
specifically, the ratio (number of 15-sphere chains)/(number of 2-sphere chains) was 
0.003 141 in the present work and 0.003 148 in Croxton’s. 

As a partial check of the present programme we set the excluded volume to zero 
and re-ran the simulation with the rigid boundary constraint removed, the centre of 
the first sphere still being fixed at (0, 0,O). Averaging over lo6 15-sphere chains we 
obtained the expected result (R; )  = N - 1 (Flory 1953) for 2 6 N s 15. The correspond- 
ing p(z,  15) density distribution for the z > 0 region is shown in figure 2, and comparing 
with figure 1 we see that, as expected, removal of the excluded volume and rigid 
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z 

Figure 2. Total segment density distribution p ( z ,  15) against z.  Full curve: normal excluded 
volume, no boundary,  z > 0,300 000 15-sphere chains.  Broken curve: zero excluded volume, 
n o  boundary, z>O,  IO6 15-sphere chains.  Dotted curve: zero excluded volume, rigid 
boundary at  z = 0, lo6 15-sphere chains. 

boundary constraints results in larger densities close to z = 0. The sharp increase in 
density which occurs between z = 0 and z = 1 in the presence of the rigid boundary 
becomes a slower decrease in its absence; in both cases a well defined discontinuity 
occurs at z = 1, its amplitude being nearly doubled in the presence of the boundary. 
An almost identical result was obtained for the z < 0 region. 

We show also in figure 2 the p ( z ,  15) distributions for ( i )  normal excluded volume 
(sphere diameter = 1) in the absence of a rigid boundary, z > 0 region, and ( i i )  zero 
excluded volume in the presence of a rigid boundary. In both cases a discontinuity 
occurs at z = 1. Inspection of the detailed computer printouts shows that removal of 
the excluded volume constraint slightly increases the amplitude of the discontinuity, 
e.g. from 0.93 to 0.96 in the presence of the boundary and  from 0.52 to 0.58 in its 
absence. On the other hand, for constant excluded volume, introduction of the boundary 
almost doubles the amplitude. In all cases the amplitude is very close to that generated 
exclusively by the ‘sharp’ edge of the density distribution of the centre of the second 
sphere of the sequence. This density is constant at 1.0 and  0.5 over the z-ranges (0, 1) 
and  (-1, 1) respectively, corresponding to presence or absence of the barrier, and falls 
to zero at z = + I .  The distributions of subsequent spheres influences the discontinuity 
only slightly. Particularly noteworthy is the constant p ( z ,  15) in the z-range (-1, 1) for 
the case of normal excluded volume and no boundary, where for all N > 2 the density 
is constant within this range and  then decreases, the rate of decrease becoming slower 
for higher N .  

We investigated the influence of the second sphere further by synthesizing chains 
in which the locus of the ( N  + 1)th sphere was not randomly distributed over the 
surface of a sphere of unit radius centred on the N t h  sphere. Specifically we generated 
three independent random numbers x,  y ,  z uniformly distributed in the range (-1, l ) ,  
and  then took the coordinates of the centre of the ( N  + 1)th sphere relative to the 
centre of the N t h  as x / r ,  y / r ,  z / r  where r = ( x2+y’+  z ~ ) ’ ’ ~ .  In  the case of zero 
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excluded volume and a rigid boundary the density distribution of the second sphere 
peaks around z = 0.7, falling from 0.57 at z = 0.7 to zero at z = 1 This is mirrored in 
the p(z,  15) distribution shown in figure 3, where the amplitude of the discontinuity 
at z = 1 is 0.55. 

2 

Figure 3. Total segment density distribution p ( z ,  15) for 10‘ 15-sphere chains, zero excluded 
volume, rigid boundary at z = 0. The centre of sphere N relative to that of sphere N - 1 
was determined by generating x, y and z independently a n d  uniformly in the range (-1, 1 )  
and  normalizing according to ( x z + y 2 + z ’ ) ’ ’ ’  = 1. 

3.2. Loops, tails and trains 

Adopting the physical definitions of loops, tails and trains given by Croxton (1986), 
we calculated the mean length of each formation, i.e the mean number of spheres they 
contain, as a function of the total number of spheres in the chain. The contact parameter 
5 was 0.0625, a sphere the 5-coordinate of whose centre is less than 5 being considered 
adsorbed at the boundary. The definitions of the lengths of loops, tails and trains 
adopted in the present work are as follows. 

( a )  Loops. If the spheres numbered p and q along a given chain are adsorbed, 
and all the spheres between them are desorbed, then the loop so formed has length 

(6)  Tails. If the chain contains a total of N spheres, and sphere q is adsorbed, 
and no other sphere between q and N is adsorbed, then the tail so formed has length 

( c )  Trains. A train has length p (21 )  if it consists of p consecutively adsorbed 
spheres, with the proviso that the first sphere of any chain (fixed at the origin) is not 
included in any train. 

As shown in figure 4, the tails in the present simulation are on average about one 
sphere longer than those in Croxton’s work, while the loops are about 0.5 spheres 
shorter. Croxton does not specifically define the lengths of tails and loops, but it is 

q - p - l ( q > p + l ) .  

N - 4. 
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Figure 4. Mean number of spheres in tails a n d  loops against the total number N of spheres 
in the chain,  for chains subject t o  excluded volume constraints and  with a rigid boundary 
at  z = 0. The contact parameter ( is 0.0625. Full curve: present Monte Carlo simulation. 
Broken curve: Croxton Monte Carlo simulation. 

unlikely that both these discrepancies arise entirely from different definitions. Neverthe- 
less, the marked dominance of tails containing all but the first sphere, independent of 
chain length, is confirmed, as also is the tendency to form very long or very short loops 
in preference to those of intermediate length, for a given chain length (see table 1 for 
15-sphere chains). 

The average length of trains in the present work is around 1.034, varying very little 
with chain length. Thus nearly all adsorbed spheres are adsorbed in isolation, very 
few trains containing two or  more spheres, as shown in table 1 for 15-sphere chains. 
However, there are some such trains, contrasting with Croxton’s finding that trains 
never exceed two spheres in length. 

Table 1. Sizes a n d  numbers of loops, trains a n d  tails for N = 15. The size column gives 
the number of spheres incorporated in each configurational feature. 300 000 15-sphere 
chains were generated with excluded volume and  rigid boundary restraints applied.  The  
contact parameter was 0.0625. 

Size Loops Trains Tails 

1 3 164 
2 1462  
3 984 
4 689 
5 503 
6 436 
7 400 
8 333 
9 319 

I O  283 
1 1  385 
12 418 
13 1024 
14 0 

20 713 400 
684 369 

17 273 
0 314 
0 330 
1 399 
0 422 
0 517 
0 678 
0 973 
0 1465 
0 3 071 
0 I O  399 
0 279 213 
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We show in figure 5 ( a )  the loop, tail and  train component fractions, i.e. the 
percentages of the spheres incorporated in these configurational features, as functions 
of the number of spheres per chain; the corresponding data obtained by Croxton are 
shown for comparison in figure 5 (  b ) .  There is good agreement on the order of magnitude 
of the various percentages, and  the higher percentage of spheres incorporated in short 
trains found in the present work is consistent with our higher p ( z ,  15) at low z. When 
the contact zone thickness 5 was reduced from 0.0625 to 0.007 28 the component 
fraction of tails exceeded 99% for N s 3 ,  in agreement with Croxton, but the 
loops/trains cross over around N = 6 persisted. The dominance of tails over loops and 
trains arises from the absence of an attractive sphere-boundary attraction, and hence 
a rapidly decreasing probability that the chain will return to the boundary as its length 
increases. 

3.3. Mean square end-to-end length 

The plot of log,,(RL) against log,,( N - 1) shown in figure 6 suggests the relationship 
( R $ ) a  ( N  - l)i.37. Croxton followed a procedure due  to Whittington (1975) and plotted 
yn against l /n ,  where yn = ( n / 2 ) ( ( ( R ~ + , ) / ( R L - , ) ) -  1) as n = N -  1; he deduced a 
limiting value yz-  1.20, although there is considerable scatter in the y,, against l / n  
plot, and so the accuracy of the extrapolation to l / n  = 0 is doubtful. Nevertheless the 
result y,, - 1.20 is consistent with the findings of Whittington (1975) and  Guttmann et 
a1 (1978), who used exact enumeration techniques on a variety of lattices. On the other 
hand yn = 1.37 (figure 6) is in good agreement with the exact enumeration studies of 
Mark and Windwer (1974) for the case of zero adsorption energy. It may be of course 
that yn decreases with increasing n, but such a decrease would appear to be very slow. 

> 
< 

5 10 0 5 10 15 
N N 

Figure 5. Percentages of spheres incorporated in tails, loops and trains against the total 
number N of spheres in the chain, for chains subject to excluded volume constraints and 
with a rigid boundary at z = 0. The contract parameter 5 is 0.0625. ( a )  Present Monte Carlo 
simulation. ( b )  Croxton Monte Carlo simulation. 
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Figure 6. Log,,(R$) against log,,( N - l ) ,  where (RL) is the mean square end-to-end length 
of a chain containing N spheres. The slope is -1.37. The two uppermost points ( N  = 19, 
24) are taken from Croxton (1986), figure 3. We quote (R:,)=37.000*0.034, ( R i ) =  
14.602i0.003 to illustrate typical standard errors in the (RL)  values. 

Plots of log,,(zk) and log,,(zN) against log,,(N- 1) have slopes of 1.42 and 0.71 
respectively. ( R L )  is always at least twice (zh), suggesting lateral spreading of the 
chain in preference to growth normal to the boundary. 

4. Conclusions 

The main conclusions to be drawn from the present work are as follows. 
(i) The existence of a discontinuity in the segment density distribution of a short 

polymer chain terminally attached to a rigid boundary, at a distance equal to one 
segment diameter from the boundary, has been confirmed by Monte Carlo simulation. 

(ii) The amplitude of this discontinuity is slightly reduced if the self-avoiding 
condition imposed on the growing chain is removed, but is approximately halved when 
the chain is not constrained by the boundary. It originates almost entirely in the density 
distribution of the second sphere of the sequence. 

(iii) The preponderance of tails over loops and trains is also confirmed, although 
the formation of trains exceeding two spheres in length has been observed, contrary 
to the findings of Croxton. This discrepancy may originate in the higher segment 
densities close to the rigid boundary found in the present simulations. 
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